Квантовая запутанность между удаленными большими объектами: точность измерений достижима

Квантовая запутанность между удаленными большими объектами

Группа исследователей из Института Нильса Бора Копенгагенского Университета смогла запутать два совершенно разных квантовых объекта. Полученный ими результат может применяться в сверхточном зондировании и в квантовой коммуникации. Запутанность считается основой квантовой коммуникации и квантового восприятия. По сути – это квантовая связь между двумя разными объектами.

И эта связь может заставить оба объекта вести себя как единый квантовый объект. В новом эксперименте ученым удалось запутать два совершенно разных объекта на далеком расстоянии. Один объект – это механический осциллятор, который вибрирует диэлектрическую мембрану.


Второй объект – это облако атомов, где каждый атом представляет собой миниатюрный магнит и физики называют его спином. Теперь эти две совершенно разные структуры можно запутать с использованием фотонов. При этом атомы могут обрабатывать квантовую информацию. А мембранам уготована участь хранить ее. Профессор Юджин Пользик считает, что провести это исследование удалось благодаря новым техническим возможностям, что приведет в дальнейшем к расширению границ возможностей запутывания.

Чем больше объекты, чем дальше они друг от друга, тем более разрозненными они становятся, тем интереснее становится запутанность как с фундаментальной, так и с прикладной точек зрения. Квантовая запутанность –сложный процесс, и важно знать, что это такое и для чего это применяется.

В проводимом эксперименте специалисты запутали две системы таким образом, что они стали двигаться коррелированным образом с точностью лучшей, чем движение нулевой точки.


Квантовая механика дает прекрасные новые возможности, но она же ограничивает точность квантовых измерений, которая на самом деле с классической точки зрения может быть простой.

У запутанных систем есть одна особенность – они могут оставаться идеально коррелированными, даже если расположены на огромном расстоянии друг от друга. Но у способов нового измерения есть много перспектив в будущем. Оно может быть применимо как на нашей планете, так и в космосе.